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Abstract—Many games often share common ideas or aspects
between them, such as their rules, controls, or playing area.
However, in the context of General Game Playing (GGP) for
board games, this area remains under-explored. We propose
to formalise the notion of ‘“‘game concept”, inspired by terms
generally used by game players and designers. Through the
Ludii General Game System, we describe concepts for several
levels of abstraction, such as the game itself, the moves played,
or the states reached. This new GGP feature associated with
the ludeme representation of games opens many new lines of
research. The creation of a hyper-agent selector, the transfer of
Al learning between games, or explaining AI techniques using
game terms, can all be facilitated by the use of game concepts.
Other applications which can benefit from game concepts are
also discussed, such as the generation of plausible reconstructed
rules for incomplete ancient games, or the implementation of a
board game recommender system.

Index Terms—General Game Playing, Concepts, Game Fea-
tures, Ludii, Transfer learning, Explainable Al, Board games

I. INTRODUCTION

Since the foundation of Artificial Intelligence (AI), games
have often been used as testbeds for major advancements [1].
This can be explained by their simplicity and popularity, but
also because, as humans, we can perceive the problems (game
interfaces) and their solutions (strategies). In the field of game
Al, two agent types can be distinguished. Dedicated Game Al
agents designed for a single game (or a small set of games)
and General Game Al agents built to play any arbitrary game.

Game-specific agents have been studied since the beginning
of the AI field [2], [3] and are often used as benchmarks
of well-known problems. For example, many single-player
games, commonly called puzzles, are interesting illustrations
of planning problems (e.g. Rubik’s Cube [4] or Sokoban
[5]) or Constraint Satisfaction Problems [6]. Similarly, multi-
player games are representations of many different Al research
areas (Knowledge Representation, Reinforcement Learning,
Transfer Learning, etc.) which lead to the development of
many game Al agents trying to outperform human players.
Nowadays, computer players for classical board games like
Chess [7], Go [8], Shogi [9] or Checkers [10], can de-
feat expert human players. Even for stochastic games like
Backgammon [11], games with incomplete information like
Poker [12], or video games like Starcraft II [13], computer
players have reached an excellent level of play. The success
of these dedicated game-playing programs has demonstrated
their capacity to outperform humans, marking a milestone
in artificial intelligence research [8], [14]. However, they are

often highly reliant on game-specific knowledge and expertise,
preventing them from playing other games as effectively.

Building general game Al agents that perform well on
any board game, rather than being specialised, is the aim of
General Game Playing (GGP). These general game Al agents
are implemented without knowing the games they will play in
advance and consequently, they cannot use specific pre-defined
knowledge about them when playing the game. This differs
greatly from dedicated game Al agents, as the Als developed
for specific games are often biased by human-developed
heuristics. Unfortunately, humans still tend to outperform Al
in general board games. This can be explained by the human
capacity for understanding common aspects between games
and consequently being able to learn new games quicker by
detecting common points with previously played games.

This paper introduces board game concepts for GGP
through the Ludii general game system. These concepts are
expressed in game terms commonly used by game players
and designers, making them an interesting mechanism for
providing human-understandable explanations of different Al
techniques. These concepts can be associated with several lev-
els of abstraction, such as the game itself, a game trial, a game
state, or individual moves. This opens many new possibilities
for different Al research topics, including agent selection,
transfer learning between games, Al explainability, as well
as game generation, reconstruction, and recommendation.

The remainder of this paper is organised as follows: Section
IT describes the field of GGP and the different general game
systems proposed so far. Section III describes the Ludii system
as well as the ludeme-based language used to describe the
games and the reasons behind its use for identifying game
concepts. Section IV highlights the notion of game concepts
in the context of Ludii, how they are modelled and computed
for each game. Section V proposes several GGP research
directions which can benefit from our proposed game concepts.
Finally, Section VI concludes the paper.

II. BACKGROUND
A. General Game Playing

In Artificial Intelligence, the General Game Playing (GGP)
challenge [15] is to develop computer players that understand
the rules of previously unknown games, and learn to play these
games well without human intervention in situations where
its knowledge of the games rules, objectives and strategies
is limited to the game description. Developing these general



agents, and the Al techniques behind them, is vitally important
in the development of real-world agents which can deal with
unpredictable and novel situations. For this reason, General
Game Playing is seen as a necessary step on the way to
Artificial General Intelligence (AGI) [16].

Historically, the first GGP model is defined in 1968 by
Jacques Pitrat [17] to describe two-player games with com-
plete information and rectangular boards. Then, only from the
’90s, other work on General Game systems appeared such as
SAL [18], Metagamer [19], Hoyle [20], and Morph-II [21].
After the turn of the millennium, more modern General Game
systems started appearing such as Multigame [22] in 2001 and
Zillions of Games [23] in 2002.

B. General board Game Languages

Many GGP systems describe their games using a standard-
ised game description language. Different game descriptions
are written in different formats and with different levels of
abstraction, lending themselves to different kinds of knowl-
edge representation, reasoning, and learning approaches (such
as for performance reasons).

1) GDL: Since 2005, the Game Description Language
(GDL) [24] and the GGP-Base platform [25] proposed by
the Stanford Logic Group' has become one of the main
standards for academic research in GGP. The purpose of GDL
is to provide a generic language for representing any board
game [26], including collaborative games and games with
simultaneous actions. GDL describes the games in a language
inspired by Prolog, using first-order logical clauses. An exten-
sion named GDL-II [27] has been developed to handle games
with partial observations and stochastic actions, and another
extension named GDL-III [28] for epistemic games. This
formalism and platform have provided a high-level challenge
which has led to important research contributions [29], [30] —
especially in Monte Carlo tree search (MCTS) enhancements
[31], [32], with some original algorithms combining constraint
programming, MCTS, and symmetry detection [33]. These
techniques have lead to the development of several General
Game Al agents that perform well on specific games (e.g.
Gamer [34], CadiaPlayer [35], ClunePlayer [36], WoodStock
[37], etc.).

Unfortunately, GDL also has some negative points. This
includes poor efficiency [38], the fact that each element of
the game has to be defined tabula rasa and cannot easily be
taken from previously modelled examples, and verbose game
descriptions that are not representative of any game-related
aspects that human players typically use. The opaque and
low-level character of GDL descriptions, without any shared
semantics or high-level concepts being explicitly recognisable
between games, forms a challenge for tasks such as the
creation of mappings between games for transfer learning,
or the generation of human-understandable explanations about
any aspect of a game.

I'Stanford Logic Group: logic.stanford.edu/

2) RBG: The Regular Boardgames (RBG) system [39]
proposes the idea of encoding piece movement for games using
a regular language. This formalism can describe any finite
deterministic game with perfect information excluding simul-
taneous moves. RBG game descriptions are typically much
short than their GDL counterparts, making it much easier to
model complex board games (e.g. Chess, Go and Arimaa).
RBG also runs substantially faster than GDL, averaging over
50 times as many playouts during a recent comparison [38].

3) Ludii: The Ludii system?, named after its predecessor
LUDI [40], is a complete general board game system, that
can model games as a tree of ludemes. The decomposition of
games into their conceptual units of game-related information
ludemes [41] results in more intuitive games descriptions com-
pared to prior GGP systems. The number and variety of board
games that are implemented within Ludii also go far beyond
those presented by most prior general game systems [42].
Ludii is capable of modelling the full range of playable GDL
games, as well as stacking games, boardless games, and games
with hidden information. This, combined with high efficiency
compared to other general systems [38], makes Ludii the ideal
system for investigating the new game concepts-based research
directions discussed in this paper.

C. Related Work

In the context of game Al research, prior work on feature
extraction has been predominantly focused on video games.
This includes more general frameworks such as the General
Video Game AI (GVGALI) system [43], [44], but also specific
video games such as Angry Birds [45] and Starcraft [46].
These papers used their extracted features to predict the
performance of different agents on unknown games, creating
a portfolio or ensemble agent that combines the strengths of
multiple Al techniques.

Despite the demonstrated advantages of this approach, little
work has been done on feature extraction for general board
games. Banerjee and Stone [47] proposed a reinforcement
learning game player interacting with the GGP-base system,
which can transfer knowledge learned in one game to expe-
dite learning in other games. This work is based on value-
function transfer [48] where general features are extracted
from the state space of a previous game and matched with
the different state space of a new game. This work showed
good performance for low-level features on small games, but
only for a limited set of specific types of source-target pairs
where appropriate state space mappings can be automatically
detected based on GDL game descriptions [49].

Some of the best General Game Playing players based on
GDL have shown the importance of heuristics and game fea-
tures by using them to improve their performance during GGP
competitions. ClunePlayer used heuristic evaluation functions
to represent simplified games as abstract models, incorporating
the most essential aspects of the original game to construct
tailored heuristics [36]. CadiaPlayer used template matching

2The source code of Ludii is available at github.com/Ludeme/Ludii



to identify simple board game features, such as square tiling
or specific piece types [35]. Each of these agents won the
International General Game Competition [50], in 2005 for
ClunePlayer and 2007, 2008, and 2012 for CadiaPlayer.

ITI. Lupl

Ludii® uses a class grammar approach [51] to provide a
direct link between the keywords in its game descriptions and
the underlying Java code that implements them. The core of
Ludii is a ludeme library, consisting of several classes, each
implementing a specific ludeme. Ludemes are used to define
both the form of the game (rules and equipment) and its
function (legal moves and outcomes for the end state).

Each game description is composed of three different sec-
tions which define the relevant information about the players
(number, facing direction, etc.), the equipment (board, pieces,
etc.), and the rules of the game. The rules of the game can
also be decomposed into four specific sub-sections:

o Meta-rules applied to each state (e.g. no repetition).

o Starting rules defining the initial state.

« Playing rules defining the legal moves for a state s.

o Ending rules defining the conditions under which the
game’s outcome is determined.

An important benefit of this representation is that it allows
each game description to be expressed in a compact and
human-understandable manner by hiding unnecessary imple-
mentation details [52]. Figure 1 shows Ludii game descriptions
for the board games Amazons* and Havannah,® alongside the
graphical interfaces of playouts run on these games.

Moves in Ludii are represented using an atomic model.
At each state s, the ludemes describing the playing rules
are evaluated and return a list of k£ legal moves M:
(mq,...,m4,...,mg). In Ludii, the transition between two
successive states s; and s;41 is possible thanks to a sequence
of atomic actions A; applied on s;. Such a sequence is mod-
elled as a move m: {(ay,...,a;,...,a,) with n the number of
actions in A;. Thanks to this representation, it is possible to
associate with each move m the concepts triggered by the list
of actions defining m. Similarly, concepts can be associated
with any state s, by computing the concepts involved at s.

IV. GAME CONCEPTS

A concept is an abstract representation that can be shared
between different objects or ideas highlighting common points.
Previous work (see Section II-C)) commonly uses the term
“game feature” to designate a high-level aspect of games.
However, in a board game context but also for the more general
purpose of this paper, we are going to use the term “game
concept” due to the existing use of the term “feature” by
previous work on state-action features for board games [53].

Every game concept in Ludii is defined by its name, its
category, its data type (numerical or binary) and its computa-
tion type. Each concept’s name is selected to be as close as

3Ludii is available at ludii.games/download.php
4Game of the Amazons: en.wikipedia.org/wiki/Game_of_the_Amazons
SHavannah: en.wikipedia.org/wiki/Havannah

possible to terms used by human players or game designers.
Version 1.2.0 of Ludii, used in this paper, currently implements
428 distinct game concepts. To organise these concepts, we
propose a taxonomy® inspired by the Core Subject Taxonomy
for Mathematical Sciences Education outlined by the Mathe-
matical Association of America [54].

A. Categories

The seven main concept categories are:

o Properties: Concepts related to the format of the game
(time model, information type, symmetries, players, ...).

« Equipment: Concepts related to the board (shape, tiling,
graph, ...) and pieces (tile, dice, large piece, ...).

« Rules: Concepts related to each rule type (meta, start,
play, end).

o Math: Concepts relating to fields of Mathematics (Arith-
metic, Comparison, Logic, Algorithmic, ...).

e Metrics: Concepts describing well-know game metrics
(game length, branching factor, ...).

« Visual: Concepts describing a game’s graphical style.

o Implementation: Concepts describing game implemen-
tation details.

Thanks to this taxonomy, it is possible to focus only on
a specific subset of categories depending on the specific
application or research field. For example, many game-playing
applications would have no use for the visual category, while
explainable Al research will likely disregard the implementa-
tion category.

B. Data Type

A game concept can be numerical or binary. Binary concepts
are used to show the existence of concepts in games, while
numerical concepts are used to quantify them.

A binary game concept is activated if a specific ludeme, or
a combination of ludemes, is used in the game’s description.
As an example, the concept STOCHASTIC describes games
involving chance elements. It can be activated by multiple
ludemes in isolation, such as rolling dice (ROLL) or the use of
any random value (VALUE RANDOM 1 5). Contrary to this, the
concept HoP CAPTURE will be triggered if the game involves
a (MOVE HOP ...) ludeme and a capturing effect within it,
such as the ludeme (REMOVE ...).

Rather than being activated or not, numerical game concepts
are instead associated with a value. This can be an integer,
such as the number of players (NUM PLAYERS) or the number
of playable sites (NUM PLAYABLE SITES), or a float, such
as the average number of possible directions per site (NUM
DIRECTIONS). Some numerical concepts also correspond to
the frequency of binary concepts, such as the average number
of times a specific terminal state is reached, e.g., in Havannah,
the frequency of winning with a loop (LOOP END) compare
to connected regions (CONNECTION END), or the average
number of times a specific move type was made, e.g. In
Amazons, the frequencies of the concepts SLIDE or SHOOT.

%The proposed taxonomy can be found at ludii.games/searchConcepts.php



(game "Amazons"
® o ﬂ [ j ® o (players 2)
— — — (equipment {
j PR w e © 0 o j ° (board (square 10))
— _— I— (piece "Queen" Each (move Slide (then (moveAgain))))
w ® o o ‘ e O “@ ® © @ (piece "Dot" Neutral)
1)
m ° ° ® o j ° (rules
— — — (start {
e o o ‘ e o ‘ ) @ ) (place "Queenl™ {"A4" "D1" "GI" "J4"})
(place "Queenzll {"A7" "Dloll llGlO" "J7"})
j e o o o o o j })
o pu Bu (play
@ o o j [ ) j e 6 o o (1f (is Even (count Moves))
r— —— r— (forEach Piece)
[ ] ‘ o o W o O ‘ (move Shoot (piece "DotQO"))
)
e 6 o o j [ J )
B S (end (if (no Moves Next) (result Mover Win)))
[ J ‘ [} [ J [ ) ‘ [ J )
)
(game "Havannah"
(players 2)

(equipment {
(board (hex 8))

. (piece "Marker" Each)
})
. . (rules
. . (play (move Add (to (sites Empty))))
. . (end
(1f

(or {
(is Loop)
(is Connected 3 SidesNoCorners)
(is Connected 2 Corners)

})

(result Mover Win)

Fig. 1: Completed games of Amazons and Havannah, on the Ludii system, along with their ludeme-based game descriptions.

C. Computation

Within the Ludii software, game concepts can be obtained in
two different ways. One is done near-instantaneously during
game compilation (compilation concepts), the other requires
running playouts (playout concepts). This distinction is im-
portant depending on the intended application. For example,
tasks that have to be responsive cannot use the concepts that
require playouts, as these take significantly longer to compute.

Compilation concepts are based only on the ludemes used to
describe static properties of the game, such as the dimensions
of the game board. During the compilation process of Ludii
games [51], the existence of specific ludemes or combinations
of ludemes trigger each of these concepts. Binary concepts are
simply activated by the existence of ludemes while numerical
concepts instead have their values set, such as the number of
component types (NUM COMPONENT TYPES).

Each atomic action in Ludii can return the concepts trig-
gered by their application to a game state, consequently,
game concepts can be associated with each move played

instantaneously, due to the atomic-action representation of a
move. However, at a higher level such as the game, playout
concepts require more time to be computed. All concepts
relating to the frequency of specific binary concepts are based
on playouts. Each playout corresponds to a sequence of moves
called a trial 7: (mq,..., My, ..., Myer) With My, the last
move played reaching the terminal state s;.,.. Thanks to the
association of each move to a set of binary concepts, each
trial 7 can compute the frequency of the concepts involved.
By running many playouts and consequently obtaining many
trials for a single game, the values of the frequency game
concepts can be computed by averaging the frequency of the
concepts in each trial. Similarly, all the concepts belonging to
the Metrics category, such as GAME LENGTH or BRANCHING
FACTOR, are also computed using these playouts. For all
playout concepts, it is important to note that their values
are dependent on the playout type, which can be obtained
randomly or with different game-playing agents.

Table I shows the values for a subset of concepts on



TABLE I: Selection of game concepts detected on some popular games.

Game Players PlayableSites = Checkmate SquareTiling HexTiling AddMove Capture ConnectionEnd Stochastic
Amazons 2 64 X v X v X X X
Backgammon 2 28 X X X X v X v
Chess 2 64 v v X X v X X
Chinese Checkers 6 121 X X v X X X X
Go (19x19) 2 361 X v X v v X X
Havannah 2 169 X X v v X v X
Hex (11x11) 2 121 X X v v X v X
Oware 2 14 X X X X v X X
Shogi 2 95 v v X X v X X
Snakes and Ladders 4 100 X v X X X X v
Tic-Tac-Toe 2 9 X v X v X X X
Xiangqi 2 90 v v X X v X X

several popular games. Due to the large number of pos-
sible game concepts, we refer readers to the webpage of
each available Ludii game at ludii.games/library.php. Each
game entry lists all the compilation concepts that were de-
tected, while playout concepts were computed by running
10,000 random playouts for each game. For example, for
Amazons and Havannah, the games shown in Figure 1, the
concepts are shown at ludii.games/concepts.php?gameld=52
and ludii.games/concepts.php?gameld=372, respectively. We
can observe that for Amazons the frequencies of the concepts
SLIDE and SHOOT are both 50%, while for Havannah the
frequencies of the concepts CONNECTIONEND and LOOPEND
are 27% and 73%, respectively.

V. GGP RESEARCH DIRECTIONS

Having now described the different game concept categories
and data types, as well as how they are computed, we turn to
the different possible applications and research directions that
can utilise them.

A. Agent Selection

Hyper-heuristic approaches aim to select the best agent,
heuristic or strategy for a given task from a pre-defined
set of choices [55]. Such approaches, especially for game
Al research, typically involve identifying features between
games that give an indication of how these different choices
will perform [56], [57]. Our proposed game concepts may
provide such features, if a correlation between the values for
certain concepts and the performance of different agents can
be identified.

Although not yet proven, it is highly likely that the ex-
istence of certain concepts or concept values would affect
the abilities of different game-playing agents. A larger board
and more pieces would typically indicate a greater branching
factor, which affects the performance of certain Al techniques
more than others. Likewise, agents that require full playouts
to compare different moves (e.g. Monte Carlo tree search)
may perform worse on games that take longer to complete,
compared to agents that use defined state evaluation heuristics
(e.g. Minimax).

After determining the performance of a set of agents for a
given set of games, we can attempt to train models to predict

the best agent for a game based on its concepts. If successful,
this can provide a portfolio agent which can predict the best
agent on a new game using its concept values. A similar
approach has been previously presented in [58], which uses
the ludemes within the games — rather than their concepts —
to predict the performance of different general-game-playing
heuristics. It is likely that the game concepts provide additional
information which can help give more accurate predictions,
thus leading to better portfolio agent performance.

B. Transfer Learning

Transfer learning research in games, and more generally re-
inforcement learning [59]-[61], focuses on transferring learned
objects such as heuristics, value functions, policies, etc. from
one or more source domains, to one or more target domains.
This may involve transferring trained weights and/or repre-
sentations — which may be explicit features [53], or learned
representations such as those in hidden layers of deep neural
networks.

Transfer of heuristics or value functions, which are functions
of game states, between any pair of games requires that those
games have identical state spaces, or compatible state rep-
resentations such that we can create mappings between their
state spaces. Similarly, transfer of policies, which are functions
of game states and actions, also requires identical action spaces
or compatible action representations that enable mappings
between action spaces. There has been some research towards
transferring value functions in GGP based on general features
of the shape of a lookahead search tree [47], as well as value
function transfer in a limited set of specific types of source-
target pairs where appropriate state space mappings can be
automatically detected based on GDL game descriptions [49].

Ludii’s object-oriented, game-independent state and action
representations [52] has already been demonstrated to facilitate
straightforward mappings between state and action spaces
of different games, allowing for effective transfer of deep
neural networks with both policy and value heads between
many different pairs of games [62]. However, even when
such mappings are possible, transfer learning is sometimes
still ineffective (or even detrimental, a phenomenon known
as negative transfer [63]) due to significant differences in



the goals or optimal strategies between games. For example,
the state and action representations of Hex and Misére Hex
— which is Hex with an inverted win condition — are very
similar, but neither policy nor value functions work well
when transferred directly (although learned features, or hidden
representations, can still be useful).

Game concepts may be viewed as “summarising” a problem
or task description for a game, and hence also used to analyse
in which aspects any pair of games is similar or different.
This can be used to predict whether or not transfer may be
successful, or more specifically to predict which aspects —
only policies, or only value functions, or only features/learned
representations, etc. — may successfully transfer [64], [65].

C. Explainability

Explainable AI (XAI) is an emerging field in Artificial Intel-
ligence that has become increasingly important in recent years
[66]. XAI attempts to bring transparency to how Al agents
perform, by providing human-understandable explanations for
the decisions they make. For many Al agents, the strategies
played are generally obscure and difficult to decipher. For
example, Deep Reinforcement Learning based agents such
as AlphaGo [67] outperforming the best Go players, are
playing strategies that are still analysed by Go experts [68]
years after its victory on Lee Sedol [69]. It can be similarly
difficult to understand the strategies followed by agents that
do not explicitly use understandable domain knowledge, such
as general game agents or puzzle solvers.

Correlations between concepts associated with played
moves, and concepts associated with the states in which
moves are played, may provide human-understandable insights
— expressed in “game terms” — of agents’ strategies. For
example, identifying specific concepts triggered by moves
played only from states always corresponding to the same set
of concepts can explain the strategy followed by an Al agent.

For General Game agents, the good or bad performance
of Al techniques/agents on games could be explained by the
concepts shared between games. This explanation could be
provided at a game agent level but also for the different
parameters or guiding search techniques to some subsets of
games but not others. For example, agents based on MCTS
techniques or an Alpha-Beta search without any pre-defined
knowledge, are generally achieving different performances
based on the rules of the games requiring more or less time to
be computing at each state (e.g. Chess-like games are generally
in favour of Alpha-Beta agents because of the checkmate rule).

D. Move Evaluation

Concepts associated with moves can be used as a means
of classifying them based on high-level categories, such as
distinguishing capture moves from moves that do not capture.
This may provide basic evaluations of the usefulness of
different moves, and hence used to guide search algorithms.
For example, such concepts could be used for move ordering
in minimax-based agents, or to bias move selection in playouts

using techniques such as FAST [32]. Such guidance will typ-
ically be fairly basic due to the high-level nature of concepts,
but also highly efficient because the concepts can be extracted
directly from moves generated by Ludii. This process does not
require any additional computation, as would be required for
features of a successor state.

E. Game Generation

Board game generation through the use of an evolutionary
algorithm has been shown to provide interesting new games
[40], [70]. One improvement to this work might be to generate
games that result in some particular combination of game
concepts that a specific player might find appealing. Game
concepts could also be an important aspect of fitness functions
for evaluating generated games, particularly for search-based
approaches in the same vein as previous work on puzzle
generation [71]. Concepts can also help to direct the selection
of specific ludemes within a generated games description, by
favouring ludemes that are associated with desirable concepts.

The use of game concepts to generate games can also
provide new challenges. For example, the generation of games
that use some novel combination of concepts that have not
been previously created, perhaps leading to new and exciting
gameplay properties. Similarly, the simplification of games by
removing a particular concept from its rules could provide
games that help teach specific rules to beginners. It has
been shown in prior work [72] that agents learn faster when
independently trained on separate simpler versions of a large
game. This is useful in cases where training time is limited,
for example in Al competitions [42], [50].

F. Game Reconstruction

As described by the Digital Ludeme Project (DLP) [73],
there are a large number of historical games for which the
rules are unknown or incomplete. A process similar to that of
game generation could be used to reconstruct the rules of an
incomplete game. By looking at the concepts used in known
nearby games, we can use these to predict which concepts
our incomplete game might have. In essence, for each game
concept, we can calculate a probability that it was included in
an incomplete game, based on the concepts present in other
similar games.

G. Game Recommender Systems

Concepts can also be used to recommend new games to
human players based on their preferences. If a player favours
games with certain concepts, such as asymmetric games with
hidden information, but dislike others, such as games with
capture moves, then we can find and suggest other games
in Ludii that also contain these desired combinations. Our
concepts could also be combined with other board game
recommendation systems, such as those developed for the
online board game geek database [74]-[77], to create an even
more extensive system.

Game concepts could also be used as searching criteria to
find appropriate benchmark games for Al agents. Many Al



techniques are not suitable or applicable to certain games
types, such as algorithms dedicated to deterministic games
versus agents dedicated to stochastic games with hidden
information. This applicability problem can be more specific,
mainly when the techniques are based on some specific heuris-
tics or functions such as knowledge designed for some specific
game goals. The search for good benchmarks can be time-
consuming and would be much easier with the use of game
concepts showing the properties of games in a recommender
system. Identifying smaller subsets of games that give near
equal information about an agent compared to the full set
has been previously investigated for the GVGAI framework
[78]. By comparing the concepts present within the Ludii game
corpus, we can achieve a similar means of creating a smaller
game subset that still provides maximal concept coverage.

VI. CONCLUSION

This paper refines the notion of game concepts to Gen-
eral Board Game Playing. Such concepts are defined using
common terms which are understood by game players and
designers. These concepts can be identified automatically for
games in Ludii thanks to the ludeme representation, and are
associated with any level of game abstraction. Game concepts
provide several interesting research possibilities, including the
creation of a portfolio agent via agent or heuristic selection,
transfer learning between games, explainability of Al tech-
niques and strategies, Game Generation, Game Reconstruction
and Game Recommendation.

Future work over the next few years will primarily involve
identifying more game concepts and implementing their de-
tection within the Ludii system, as well as investigating the
research directions proposed in this paper. In the long term, the
ludeme philosophy used to represent games could be extended
to other domains, such as protein folding, physics simulations
or chemical reactions, by adapting the notion of ludemes to
conceptual units of each of these topics. Consequently, con-
cepts specific to these fields could be identified and detected
by similar techniques, providing a human understandable
explanation for any technique applied in these fields.
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